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1 (i) Show that the equation

3(2 sinx − cosx) = 2(sinx − 3 cosx)

can be written in the form tanx = −3
4. [2]

(ii) Solve the equation 3(2 sinx − cosx) = 2(sinx − 3 cosx), for 0◦ ≤ x ≤ 360◦. [2]

2

O
x

y

1 3

y = a
x

The diagram shows part of the curvey =
a
x

, wherea is a positive constant. Given that the volume

obtained when the shaded region is rotated through 360◦ about thex-axis is 24π, find the value ofa.
[4]

3 The functions f and g are defined forx ∈ > by

f : x  → 4x − 2x2,

g : x  → 5x + 3.

(i) Find the range of f. [2]

(ii) Find the value of the constantk for which the equation gf(x) = k has equal roots. [3]
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In the diagram,A is the point(−1, 3) andB is the point(3, 1). The lineL1 passes throughA and is
parallel toOB. The lineL2 passes throughB and is perpendicular toAB. The linesL1 andL2 meet at
C. Find the coordinates ofC. [6]
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5 Relative to an originO, the position vectors of the pointsA andB are given by

−−→
OA = (−2

3
1
) and

−−→
OB = ( 4

1
p
) .

(i) Find the value ofp for which
−−→
OA is perpendicular to

−−→
OB. [2]

(ii) Find the values ofp for which the magnitude of
−−→
AB is 7. [4]

6 (i) Find the first 3 terms in the expansion of(1+ ax)5 in ascending powers ofx. [2]

(ii) Given that there is no term inx in the expansion of(1 − 2x)(1 + ax)5, find the value of the
constanta. [2]

(iii) For this value ofa, find the coefficient ofx2 in the expansion of(1− 2x)(1+ ax)5. [3]

7 (a) Find the sum of all the multiples of 5 between 100 and 300 inclusive. [3]

(b) A geometric progression has a common ratio of−2
3 and the sum of the first 3 terms is 35. Find

(i) the first term of the progression, [3]

(ii) the sum to infinity. [2]

8 A solid rectangular block has a square base of sidex cm. The height of the block ish cm and the total
surface area of the block is 96 cm2.

(i) Expressh in terms ofx and show that the volume,V cm3, of the block is given by

V = 24x − 1
2x3. [3]

Given thatx can vary,

(ii) find the stationary value ofV, [3]

(iii) determine whether this stationary value is a maximum or a minimum. [2]

[Questions 9, 10 and 11 are printed on the next page.]
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The diagram shows the curvey = (x − 2)2 and the liney + 2x = 7, which intersect at pointsA andB.
Find the area of the shaded region. [8]

10 The equation of a curve isy = 1
6(2x − 3)3 − 4x.

(i) Find
dy
dx

. [3]

(ii) Find the equation of the tangent to the curve at the point where the curve intersects they-axis.
[3]

(iii) Find the set of values ofx for which 1
6(2x − 3)3 − 4x is an increasing function ofx. [3]

11 The function f :x  → 4− 3 sinx is defined for the domain 0≤ x ≤ 2π.

(i) Solve the equation f(x) = 2. [3]

(ii) Sketch the graph ofy = f(x). [2]

(iii) Find the set of values ofk for which the equation f(x) = k has no solution. [2]

The function g :x  → 4− 3 sinx is defined for the domain12π ≤ x ≤ A.

(iv) State the largest value ofA for which g has an inverse. [1]

(v) For this value ofA, find the value of g−1(3). [2]
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